- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Ezeakunne, Chidozie (2)
-
Kattel, Shyam (2)
-
Carnegie, Nathaniel (1)
-
Dangi, Beni B (1)
-
Ghoshal, Sourav (1)
-
Lamichhane, Bipin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this study, we used a combination of density functional theory with Hubbard U correction (DFT+U) and machine learning (ML) to accurately predict the band gaps and lattice parameters of metal oxides: TiO2 (rutile and anatase), cubic ZnO, cubic ZnO2, cubic CeO2, and cubic ZrO2. Our results show that including Up values for oxygen 2p orbitals alongside Ud/f for metal 3d or 4f orbitals significantly enhances the accuracy of these predictions. Through extensive DFT+U calculations, we identify optimal (Up, Ud/f) integer pairs that closely reproduce experimentally measured band gaps and lattice parameters for each oxide: (8 eV, 8 eV) for rutile TiO2; (3 eV, 6 eV) for anatase TiO2; (6 eV, 12 eV) for c-ZnO; (10 eV, 10 eV) for c-ZnO2; (9 eV, 5 eV) for c-ZrO2; and (7 eV, 12 eV) for c-CeO2. Our ML analysis showed that simple supervised ML models can closely reproduce these DFT+U results at a fraction of the computational cost and generalize well to related polymorphs. Our approach builds on existing high-throughput DFT+U frameworks by providing fast pre-DFT estimates of structural properties and band gaps. Since this work does not aim to improve the underlying DFT+U method, the ML model shares its limitations. We also note that the reported values of Up strongly depend on the choice of correlated orbitals, and caution is recommended with a different choice of correlated orbitals.more » « lessFree, publicly-accessible full text available March 6, 2026
-
Ghoshal, Sourav; Carnegie, Nathaniel; Ezeakunne, Chidozie; Dangi, Beni B; Kattel, Shyam (, ChemPhysChem)Abstract Here, we used a combination of laser‐induced experiments and density functional theory (DFT) calculations to study the mechanism of growth of carbonaceous species on the Mg surface. Experimental observations revealed that the carbon deposit forms upon laser illumination on the Mg surface, with the deposit being clearer and better structured in the presence of 1,3‐butadiene (C4H6) compared to ethylene (C2H4) gas. DFT thermodynamic and kinetic calculations of C2−C4hydrocarbons interaction on low‐index Mg(0001) were used to explain this experimental observation. Our results on Mg(0001) showed that the cis isomer of C4H6binds more strongly than its trans isomer via a [4+2] cycloaddition mechanism. We also investigated the adsorption of two units of C2H4and C4H6molecules, as well as the subsequent dehydrogenation stages that produce radical species responsible for chain growth mechanisms. The results showed that free energy change of dehydrogenation of two units of cis‐C4H6[i. e. cis‐C8H12] is lower than the dehydrogenation of trans conformer of C4H6and C2H4molecule, indicating that the dehydrogenation of two units of cis‐C4H6facilitates the initiation of growth of carbonaceous species on Mg surfaces. Therefore, the DFT calculations pinpoint the origin of the experimental observation of clearer carbon deposits on the Mg surface.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
